Here you can find a summary of the main formulas you need to know. This list was not organized by years of schooling but thematically. Just choose one of the topics and you will be able to view the formulas related to this subject. This is not an exhaustive list, ie it’s not here all math formulas that are used in mathematics class, only those that were considered most important.
Area
| area | |||
| Square | A=l2A=l2 | ll : length of side | |
| Rectangle | A=w×hA=w×h | ww : width hh : height | |
| Triangle | A=b×h2A=b×h2 | bb : base hh : height | |
| Rhombus | A=D×d2A=D×d2 | DD : large diagonal dd : small diagonal | |
| Trapezoid | A=B+b2×hA=B+b2×h | BB : large side bb : small side hh: height | |
| Regular polygon | A=P2×aA=P2×a | PP : perimeter aa : apothem | |
| Circle | A=πr2A=πr2 P=2πrP=2πr | rr : radius PP : perimeter | |
| Cone (lateral surface) | A=πr×sA=πr×s | rr : radius ss : slant height | |
| Sphere (surface area) | A=4πr2A=4πr2 |
Volumes
Volumes
| Cube | V=s3V=s3 | ss: side | |
| Parallelepiped | V=l×w×hV=l×w×h | ll: length ww: width hh: height | |
| Regular prism | V=b×hV=b×h | bb: base hh: height | |
| Cylinder | V=πr2×hV=πr2×h | rr: radius hh: height | |
| Cone (or pyramid) | V=13b×hV=13b×h | bb: base hh: height | |
| Sphere | V=43πr3 |
Functions and equations
| Directly Proportional | y=kxy=kx k=yxk=yx | kk: Constant of Proportionality |
| Inversely Proportional | y=kxy=kx k=yxk=yx | |
| ax2+bx+c=0ax2+bx+c=0 | Quadratic formula | x=−b±b2−4ac−−−−−−−√2ax=-b±b2-4ac2a |
| Concavity | Concave up: a>0a>0 | |
| Concave down: a<0a<0 | ||
| Discriminant | Δ=b2−4acΔ=b2-4ac | |
| Vertex of the parabola | V(−b2a,−Δ4a)V(-b2a,-Δ4a) | |
| y=a(x−h)2+ky=a(x-h)2+k | Concavity | Concave up: a>0a>0 |
| Concave down: a<0a<0 | ||
| Vertex of the parabola | V(h,k)V(h,k) | |
| Zero-product property | A×B=0⇔A=0∨B=0A×B=0⇔A=0∨B=0 | ex : (x+2)×(x−1)=0⇔(x+2)×(x-1)=0⇔ x+2=0∨x−1=0⇔x=−2∨x=1x+2=0∨x-1=0⇔x=-2∨x=1 |
| Difference of two squares | (a−b)(a+b)=a2−b2(a-b)(a+b)=a2-b2 | ex : (x−2)(x+2)=x2−22=x2−4(x-2)(x+2)=x2-22=x2-4 |
| Perfect square trinomial | (a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2 | ex : (2x+3)2=(2x)2+2⋅2x⋅3+32=(2x+3)2=(2x)2+2⋅2x⋅3+32= 4×2+12x+94×2+12x+9 |
| Binomial theorem (x+y)n=∑k=0n nCk xn−k yk |
exponents
| Product | am×an=am+nam×an=am+n | ex : 35×32=35+2=3735×32=35+2=37 |
| am×bm=(a×b)mam×bm=(a×b)m | ex : 35×25=(3×2)5=6535×25=(3×2)5=65 | |
| Quotient | am÷an=am−nam÷an=am-n | ex : 37÷32=37−2=3537÷32=37-2=35 |
| am÷bm=(a÷b)mam÷bm=(a÷b)m | ex : 65÷25=(6÷2)5=3565÷25=(6÷2)5=35 ex : 53÷23=(52)353÷23=(52)3 | |
| Power of Power | (am)p=am×p(am)p=am×p | ex : (52)3=52×3=56(52)3=52×3=56 |
| Zero Exponents | a0=1a0=1 | ex : 80=180=1 |
| Negative Exponents | a−n=(1a)na-n=(1a)n | ex : 3−2=(13)23-2=(13)2 ex : (23)−4=(32)4(23)-4=(32)4 |
| Fractional Exponents | apq=ap−−√qapq=apq | ex : 243=24−−√3243=243 |
